Soybean Oil Regulates the Fatty Acid Synthesis II System of Bacillus amyloliquefaciens LFB112 by Activating Acetyl-CoA Levels

Author:

Cheng Qiang1ORCID,Li Zhongxuan12,Zhang Jing1,Guo Henan1,Ahmat Marhaba13ORCID,Cheng Junhao1ORCID,Abbas Zaheer1ORCID,Hua Zhengchang1,Wang Junyong1,Tong Yucui1,Yang Tiantian1ORCID,Si Dayong1,Zhang Rijun1

Affiliation:

1. State Key Laboratory of Animal Nutrition, Laboratory of Feed Biotechnology, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China

2. College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China

3. Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

Abstract

[Background] Bacillus LFB112 is a strain of Bacillus amyloliquefaciens screened in our laboratory. Previous studies found that it has a strong ability for fatty acid metabolism and can improve the lipid metabolism of broilers when used as feed additives. [Methods] This study aimed to confirm the fatty acid metabolism of Bacillus LFB112. Sterilized soybean oil (SSO) was added to the Beef Peptone Yeast (BPY) medium, and its effect on fatty acid content in the supernatant and bacteria, as well as expression levels of genes related to fatty acid metabolism, were studied. The control group was the original culture medium without oil. [Results] Acetic acid produced by the SSO group of Bacillus LFB112 decreased, but the content of unsaturated fatty acids increased. The 1.6% SSO group significantly increased the contents of pyruvate and acetyl-CoA in the pellets. Furthermore, the mRNA levels of enzymes involved in the type II fatty acid synthesis pathway of FabD, FabH, FabG, FabZ, FabI, and FabF were up-regulated. [Conclusions] Soybean oil increased the content of acetyl-CoA in Bacillus LFB112, activated its type II fatty acid synthesis pathway, and improved the fatty acid metabolism level of Bacillus LFB112. These intriguing results pave the way for further investigations into the intricate interplay between Bacillus LFB112 and fatty acid metabolism, with potential applications in animal nutrition and feed additive development.

Funder

Beijing Science and Technology Plan Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3