A UAV-Based Single-Lens Stereoscopic Photography Method for Phenotyping the Architecture Traits of Orchard Trees

Author:

Zhang Wenli1ORCID,Peng Xinyu1,Bai Tingting1,Wang Haozhou2ORCID,Takata Daisuke3,Guo Wei2ORCID

Affiliation:

1. Information Department, Beijing University of Technology, Beijing 100022, China

2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan

3. Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima 960-1296, Japan

Abstract

This article addresses the challenges of measuring the 3D architecture traits, such as height and volume, of fruit tree canopies, constituting information that is essential for assessing tree growth and informing orchard management. The traditional methods are time-consuming, prompting the need for efficient alternatives. Recent advancements in unmanned aerial vehicle (UAV) technology, particularly using Light Detection and Ranging (LiDAR) and RGB cameras, have emerged as promising solutions. LiDAR offers precise 3D data but is costly and computationally intensive. RGB and photogrammetry techniques like Structure from Motion and Multi-View Stereo (SfM-MVS) can be a cost-effective alternative to LiDAR, but the computational demands still exist. This paper introduces an innovative approach using UAV-based single-lens stereoscopic photography to overcome these limitations. This method utilizes color variations in canopies and a dual-image-input network to generate a detailed canopy height map (CHM). Additionally, a block structure similarity method is presented to enhance height estimation accuracy in single-lens UAV photography. As a result, the average rates of growth in canopy height (CH), canopy volume (CV), canopy width (CW), and canopy project area (CPA) were 3.296%, 9.067%, 2.772%, and 5.541%, respectively. The r2 values of CH, CV, CW, and CPA were 0.9039, 0.9081, 0.9228, and 0.9303, respectively. In addition, compared to the commonly used SFM-MVS approach, the proposed method reduces the time cost of canopy reconstruction by 95.2% and of the cost of images needed for canopy reconstruction by 88.2%. This approach allows growers and researchers to utilize UAV-based approaches in actual orchard environments without incurring high computation costs.

Funder

National Natural Science Foundation of China

Japan Science and Technology Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3