Early Estimation of Olive Production from Light Drone Orthophoto, through Canopy Radius

Author:

Ortenzi LucianoORCID,Violino Simona,Pallottino FedericoORCID,Figorilli SimoneORCID,Vasta Simone,Tocci Francesco,Antonucci FrancescaORCID,Imperi Giancarlo,Costa CorradoORCID

Abstract

Background: The present work aims at obtaining an approximate early production estimate of olive orchards used for extra virgin olive oil production by combining image analysis techniques with light drone images acquisition and photogrammetric reconstruction. Methods: In May 2019, an orthophoto was reconstructed through a flight over an olive grove to predict oil production from segmentation of plant canopy surfaces. The orchard was divided into four plots (three considered as training plots and one considered as a test plot). For each olive tree of the considered plot, the leaf surface was assessed by segmenting the orthophoto and counting the pixels belonging to the canopy. At harvesting, the olive production per plant was measured. The canopy radius of the plant (R) was automatically obtained from the pixel classification and the measured production was plotted as a function of R. Results: After applying a k-means-classification to the four plots, two distinct subsets emerged in association with the year of loading (high-production) and unloading. For each plot of the training set the logarithm of the production curves against R were fitted with a linear function considering only four samples (two samples belonging to the loading region and two samples belonging to the unloading one) and the total production estimate was obtained by integrating the exponent of the fitting-curve over R. The three fitting curves obtained were used to estimate the total production of the test plot. The resulting estimate of the total production deviates from the real one by less than 12% in training and less than 18% in tests. Conclusions: The early estimation of the total production based on R extracted by the orthophotos can allow the design of an anti-fraud protocol on the declared production.

Funder

Ministry of Agricultural, Food and Forestry Policies

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference34 articles.

1. A Full Technological Traceability System for Extra Virgin Olive Oil

2. Traceability of olive oil based on volatiles pattern and multivariate analysis

3. Are the Innovative Electronic Labels for Extra Virgin Olive Oil Sustainable, Traceable, and Accepted by Consumers?

4. The role of PDO/PGI labelling in Italian consumers’ food choices;Vecchio;Agric. Econ. Rev.,2011

5. Country-of-origin effects on German peaches consumers;Cicia;New Medit.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3