Technologies for Forecasting Tree Fruit Load and Harvest Timing—From Ground, Sky and Time

Author:

Anderson Nicholas ToddORCID,Walsh Kerry BrianORCID,Wulfsohn DvoralaiORCID

Abstract

The management and marketing of fruit requires data on expected numbers, size, quality and timing. Current practice estimates orchard fruit load based on the qualitative assessment of fruit number per tree and historical orchard yield, or manually counting a subsample of trees. This review considers technological aids assisting these estimates, in terms of: (i) improving sampling strategies by the number of units to be counted and their selection; (ii) machine vision for the direct measurement of fruit number and size on the canopy; (iii) aerial or satellite imagery for the acquisition of information on tree structural parameters and spectral indices, with the indirect assessment of fruit load; (iv) models extrapolating historical yield data with knowledge of tree management and climate parameters, and (v) technologies relevant to the estimation of harvest timing such as heat units and the proximal sensing of fruit maturity attributes. Machine vision is currently dominating research outputs on fruit load estimation, while the improvement of sampling strategies has potential for a widespread impact. Techniques based on tree parameters and modeling offer scalability, but tree crops are complicated (perennialism). The use of machine vision for flowering estimates, fruit sizing, external quality evaluation is also considered. The potential synergies between technologies are highlighted.

Funder

Hort Innovation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Apple SSC estimation using hand-held NIRS instrument for outdoor measurement with ambient light correction;Postharvest Biology and Technology;2024-11

2. Mathematical model for predicting the yield of apple trees on rootstock 62-396;Вестник российской сельскохозяйственной науки;2024-09-02

3. Performance Improvement of Regional Agricultural Forecasts with PECNET and State-Space Model;2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics);2024-07-15

4. Harvest bin placement based on machine vision data in mango orchards;Acta Horticulturae;2024-05

5. Machine vision methods in forecast of mango crop;Acta Horticulturae;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3