Artificial Lighting Photoperiod Manipulation Approach to Improve Productivity and Energy Use Efficacies of Plant Factory Cultivated Stevia rebaudiana

Author:

Rengasamy NarendrenORCID,Othman Rofina YasminORCID,Che Hang SengORCID,Harikrishna Jennifer AnnORCID

Abstract

Stevia rebaudiana cultivated in non-native tropical conditions tends to flower early, halting vegetative growth, resulting in lower biomass and yields of its valued steviol glycoside metabolites. While indoor cultivation allows manipulation of artificial lighting to mimic optimal conditions, it introduces an additional energy cost. The study objectives were to assess photoperiod manipulation as a lighting strategy to increase overall biomass and metabolite yields as well as to improve the efficacy of the electrical energy used for indoor cultivation of Stevia rebaudiana in non-native environmental conditions. Stevia was grown under artificial lighting with red, green, and blue wavelengths with photoperiods of 8 h, 12 h, 16 h, and intermittent light amounting to 16/24 h, each with a constant Daily Light Integral (DLI) of 7.2 mol m−2 day−1. Yield was measured as leaf dry weight biomass in combination with Liquid chromatography–mass spectrometry (LCMS) analysis of Stevioside and Rebaudioside A content. The photon flux density of the artificial and natural light as measured by a spectroradiometer, and the energy use data collected with a three-phase power quality logger, were compared for each treatment tested and to that from plants grown under natural light irradiation in a greenhouse. Yield and energy data were used to determine the efficacies of the lighting systems tested. Stevia plants under a continuous 16-h photoperiod (16H) had the highest productivity, resulting in the highest biomass accumulation and metabolite concentrations. The Stevioside and Rebaudioside A yields per plant were 975% higher than those obtained under natural daylight and day-neutral tropical photoperiod. Overall energy use and photon conversion efficacies were also highest under 16H at 65.10 g kWh−1 for biomass accumulation, 12.40 g kWh−1 for metabolite yields and 7.5 mg mol−1 for photon conversion. These findings support the application of photoperiod manipulation as a viable approach to increase productivity and improve energy use efficacies for indoor cultivation of Stevia rebaudiana plants under artificial lighting in non-native environments with the 16-h photoperiod under red and blue artificial light supplemented with green spectrum as the best option.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3