Effects of Growing Cycle and Genotype on the Morphometric Properties and Glucosinolates Amount and Profile of Sprouts, Microgreens and Baby Leaves of Broccoli (Brassica oleracea L. var. italica Plenck) and Kale (B. oleracea L. var. acephala DC.)

Author:

Di Bella Maria Concetta,Toscano StefaniaORCID,Arena Donata,Moreno Diego A.ORCID,Romano DanielaORCID,Branca FerdinandoORCID

Abstract

Some new foods (sprouts, microgreens and baby leaf) of the brassica genus are appreciated for their nutritional and nutraceutical values. The aim of this experimental trial was to improve the nutraceutical traits of these foods by evaluating the effects of the climatic condition, genotype, and plant growth stage on the development of greater quality in relation to these new foods. The morphometric and glucosinolates (GLSs) traits of three traditional Italian cultivars of Brassica oleracea crops, such as broccoli (B. oleracea var. italica), namely the traditional Sicilian landrace ‘Broccolo Nero’ (BN) and the commercial ‘Cavolo Broccolo Ramoso Calabrese’ (CR), as well as the commercial kale cultivar ‘Cavolo Laciniato Nero di Toscana’ (CL) (B. oleracea var. acephala DC.), were evaluated in an unheated greenhouse in Catania during the end of 2019 and the beginning of 2020. Plant growth was studied at different phenological stages—from seeds to sprouts, microgreens, and baby leaves—over two growing cycles, one in autumn–winter and the other in spring–summer. ‘Broccolo Nero’ (BN) broccoli showed more rapid growth and biomass production than the other two cultivars evaluated (i.e., weight, hypocotyl length, and leaf width). The GLS profile varied significantly (p < 0.05), in relation both to plant’s growth stage and to genotype. The highest amount of glucoraphanin was detected for BN microgreens and baby leaves, about 8 µmol g−1 d.w., whereas glucobrassicin and its related derivatives were about 14 µmol g−1 d.w. in microgreens and baby leaves of CL and about 15 µmol g−1 d.w. and 10 µmol g−1 d.w. for glucoraphanin in CR, respectively. These new foods can also be produced at home with simple and cheap equipment

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3