Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage

Author:

Auerbach HorstORCID,Theobald Peter,Kroschewski Bärbel,Weiss KirstenORCID

Abstract

Whole-crop cereal silage represents an important component of ruminant diets and is used as a substrate for biogas production. Due to the scarcity of data on whole-crop rye (Secale cereale L., WCR), our study aimed to evaluate the effects of a range of biological and chemical additives of different compositions on the fermentation and aerobic stability of silage made from this species. In addition, the production of various volatile organic compounds (VOCs), which potentially contribute to greenhouse gas emissions, was monitored. Regardless of additive treatment, all WCR silages were well fermented as reflected by the complete absence of butyric acid. Inoculants containing Lactobacillus buchneri and chemical additives reduced dry matter (DM) losses during fermentation for 53 days (p < 0.001), which were closely related with the concentration of ethanol upon silo opening (R2 = 0.88, p < 0.001). Silage treated with Lactobacillus buchneri, alone or in combination with a homofermentative strain, had the lowest yeast count (p < 0.001) and, simultaneously, the highest aerobic stability (p < 0.001). Chemical additives outperformed all other additives by largely restricting the formation of ethyl esters of lactic and acetic acids (p < 0.001). The concentration of ethanol strongly correlated with those of ethyl lactate (R2 = 0.94, p < 0.001), ethyl acetate (R2 = 0.85, p < 0.001), and total ethyl esters (R2 = 0.94, p < 0.001). The use of a simple linear regression model exclusively based on the ethanol content proved useful to predict the concentration of total ethyl esters in WCR silage (R2 = 0.93, p < 0.001).

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3