GFET Asymmetric Transfer Response Analysis through Access Region Resistances

Author:

Toral-Lopez AlejandroORCID,Marin Enrique G.ORCID,Pasadas FranciscoORCID,Gonzalez-Medina Jose MariaORCID,Ruiz Francisco G.ORCID,Jiménez DavidORCID,Godoy AndresORCID

Abstract

Graphene-based devices are planned to augment the functionality of Si and III-V based technology in radio-frequency (RF) electronics. The expectations in designing graphene field-effect transistors (GFETs) with enhanced RF performance have attracted significant experimental efforts, mainly concentrated on achieving high mobility samples. However, little attention has been paid, so far, to the role of the access regions in these devices. Here, we analyse in detail, via numerical simulations, how the GFET transfer response is severely impacted by these regions, showing that they play a significant role in the asymmetric saturated behaviour commonly observed in GFETs. We also investigate how the modulation of the access region conductivity (i.e., by the influence of a back gate) and the presence of imperfections in the graphene layer (e.g., charge puddles) affects the transfer response. The analysis is extended to assess the application of GFETs for RF applications, by evaluating their cut-off frequency.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3