Author:
Rong Chunchi,Chen Haiqin,Tang Xin,Gu Zhennan,Zhao Jianxin,Zhang Hao,Chen Yongquan,Chen Wei
Abstract
Although various ω-3 fatty acid desaturases (ω3Des) have been identified and well-studied regarding substrate preference and regiospecificity, the molecular mechanism of their substrate specificities remains to be investigated. Here we compared two ω3Des, FADS15 from Mortierella alpina and oRiFADS17 from Rhizophagus irregularis, which possessed a substrate preference for linoleic acid and arachidonic acid, respectively. Their sequences were divided into six sections and a domain-swapping strategy was used to test the role of each section in catalytic activity. Heterologous expression and fatty acid experiments of hybrid enzymes in Saccharomyces cerevisiae INVSc1 indicated that the sequences between his-boxes I and II played critical roles in influencing substrate preference. Based on site-directed mutagenesis and molecular docking, the amino acid substitutions W129T and T144W, located in the upper part of the hydrocarbon chain, were found to be involved in substrate specificity, while V137T and V152T were confirmed to interfere with substrate recognition. This study provides significant insight into the structure-function relationship of ω3Des.
Funder
National Natural Science Foundation of China
National Aerospace Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献