Comparative Genomics of Mortierellaceae Provides Insights into Lipid Metabolism: Two Novel Types of Fatty Acid Synthase

Author:

Zhao HengORCID,Nie Yong,Jiang Yang,Wang Shi,Zhang Tian-Yu,Liu Xiao-YongORCID

Abstract

Fungal species in the family Mortierellaceae are important for their remarkable capability to synthesize large amounts of polyunsaturated fatty acids, especially arachidonic acid (ARA). Although many genomes have been published, the quality of these data is not satisfactory, resulting in an incomplete understanding of the lipid pathway in Mortierellaceae. We provide herein two novel and high-quality genomes with 55.32% of syntenic gene pairs for Mortierella alpina CGMCC 20262 and M. schmuckeri CGMCC 20261, spanning 28 scaffolds of 40.22 Mb and 25 scaffolds of 49.24 Mb, respectively. The relative smaller genome for the former is due to fewer protein-coding gene models (11,761 vs. 13,051). The former yields 45.57% of ARA in total fatty acids, while the latter 6.95%. The accumulation of ARA is speculated to be associated with delta-5 desaturase (Delta5) and elongation of very long chain fatty acids protein 3 (ELOVL3). A further genomic comparison of 19 strains in 10 species in three genera in the Mortierellaceae reveals three types of fatty acid synthase (FAS), two of which are new to science. The most common type I exists in 16 strains of eight species of three genera, and was discovered previously and consists of a single unit with eight active sites. The newly revealed type II exists only in M. antarctica KOD 1030 where the unit is separated into two subunits α and β comprised of three and five active sites, respectively. Another newly revealed type III exists in M. alpina AD071 and Dissophora globulifera REB-010B, similar to type II but different in having one more acyl carrier protein domain in the α subunit. This study provides novel insights into the enzymes related to the lipid metabolism, especially the ARA-related Delta5, ELOVL3, and FAS, laying a foundation for genetic engineering of Mortierellaceae to modulate yield in polyunsaturated fatty acids.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3