Smooth Trajectory Planning at the Handling Limits for Oval Racing

Author:

Ögretmen LeventORCID,Rowold MatthiasORCID,Ochsenius Marvin,Lohmann BorisORCID

Abstract

In motion planning for autonomous racing, the challenge arises in planning smooth trajectories close to the handling limits of the vehicle with a sufficient planning horizon. Graph-based trajectory planning methods can find the global discrete-optimal solution, but they suffer from the curse of dimensionality. Therefore, to achieve low computation times despite a long planning horizon, coarse discretization and simple edges that are efficient to generate must be used. However, the resulting rough trajectories cannot reach the handling limits of the vehicle and are also difficult to track by the controller, which can lead to unstable driving behavior. In this paper, we show that the initial edges connecting the vehicle’s estimated state with the actual graph are crucial for vehicle stability and race performance. We therefore propose a sampling-based approach that relies on jerk-optimal curves to generate these initial edges. The concept is introduced using a layer-based graph, but it can be applied to other graph structures as well. We describe the integration of the curves within the graph and the required adaptation to racing scenarios. Our approach enables stable driving at the handling limits and fully autonomous operation on the race track. While simulations show the comparison of our concept with an alternative approach based on uniform acceleration, we also present experimental results of a dynamic overtake with speeds up to 74 m/s on a full-size vehicle.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling-Based Motion Planning with Online Racing Line Generation for Autonomous Driving on Three-Dimensional Race Tracks;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

2. Sensor-fusion-based road friction estimation for robust safety-critical trajectory planning of automated driving;International Journal of Vehicle Design;2024

3. Hierarchical Time-Optimal Planning for Multi-Vehicle Racing;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. A Hybrid Trajectory Planning Approach for Autonomous Rule-Compliant Multi-Vehicle Oval Racing;SAE International Journal of Connected and Automated Vehicles;2023-09-07

5. Online Time-Optimal Trajectory Planning on Three-Dimensional Race Tracks;2023 IEEE Intelligent Vehicles Symposium (IV);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3