A Miniaturized and Fast System for Thin Film Thickness Measurement

Author:

Hao Ran,Zhu Linlin,Li Zexiao,Fang Fengzhou,Zhang Xiaodong

Abstract

Transparent films are significant industrial components that are widely used in modern optics, microelectronics, optical engineering, and other related fields. There is an urgent need for the fast and stable thickness measurement of industrial films at the micron-grade. This paper built a miniaturized and low-cost film thickness measurement system based on confocal spectral imaging and the principle of thin-film spectral interference. The reflection interference spectrum was analyzed to extract the phase term introduced by the film thickness from the full spectrum information, where local spectral noise can be better corrected. An efficient and robust film thickness calculation algorithm was realized without any calibrating sample. The micron-grade thickness measurement system had an industrial property with a measurement range of up to 75 μm with a measurement uncertainty of 0.1 μm, presenting a good performance in single-layer film thickness measurement with high efficiency.

Funder

the National Key Research and Development Program of China

Science Challenge Program

Postdoctoral Innovative Talent Support Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3