Forecasting Short-Term Electricity Load Using Validated Ensemble Learning

Author:

Sankalpa ChatumORCID,Kittipiyakul SomsakORCID,Laitrakun SeksanORCID

Abstract

As short-term load forecasting is essential for the day-to-day operation planning of power systems, we built an ensemble learning model to perform such forecasting for Thai data. The proposed model uses voting regression (VR), producing forecasts with weighted averages of forecasts from five individual models: three parametric multiple linear regressors and two non-parametric machine-learning models. The regressors are linear regression models with gradient-descent (LR), ordinary least-squares (OLS) estimators, and generalized least-squares auto-regression (GLSAR) models. In contrast, the machine-learning models are decision trees (DT) and random forests (RF). To select the best model variables and hyper-parameters, we used cross-validation (CV) performance instead of the test data performance, which yielded overly good test performance. We compared various validation schemes and found that the Blocked-CV scheme gives the validation error closest to the test error. Using Blocked-CV, the test results show that the VR model outperforms all its individual predictors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference38 articles.

1. Uncertainty Forecasting in a Nutshell: Prediction Models Designed to Prevent Significant Errors;IEEE Power Energy Mag.,2017

2. A Study of Load Demand Forecasting Models in Electric Power System Operation and Planning;GMSARN Int. J.,2016

3. Performance analysis of short-term electricity demand with atmospheric variables;Energies,2018

4. Short-term electricity demand forecasting: Impact analysis of temperature for Thailand;Energies,2020

5. A note on the validity of cross-validation for evaluating autoregressive time series prediction;Comput. Stat. Data Anal.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3