A Deep Learning Approach for Short-Term Electricity Demand Forecasting: Analysis of Thailand Data

Author:

Shiwakoti Ranju Kumari1,Charoenlarpnopparut Chalie1ORCID,Chapagain Kamal2ORCID

Affiliation:

1. School of Information, Computer, and Communication, Technology Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand

2. Department of Electrical and Electronics Engineering, Kathmandu University, Dhulikhel P.O. Box 6250, Nepal

Abstract

Accurate electricity demand forecasting serves as a vital planning tool, enhancing the reliability of management decisions. Apart from that, achieving these aims, particularly in managing peak demand, faces challenges due to the industry’s volatility and the ongoing increase in residential energy use. Our research suggests that employing deep learning algorithms, such as recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent units (GRU), holds promise for the accurate forecasting of electrical energy demand in time series data. This paper presents the construction and testing of three deep learning models across three separate scenarios. Scenario 1 involves utilizing data from all-day demand. In Scenario 2, only weekday data are considered. Scenario 3 uses data from non-working days (Saturdays, Sundays, and holidays). The models underwent training and testing across a wide range of alternative hyperparameters to determine the optimal configuration. The proposed model’s validation involved utilizing a dataset comprising half-hourly electrical energy demand data spanning seven years from the Electricity Generating Authority of Thailand (EGAT). In terms of model performance, we determined that the RNN-GRU model performed better when the dataset was substantial, especially in scenarios 1 and 2. On the other hand, the RNN-LSTM model is excellent in Scenario 3. Specifically, the RNN-GRU model achieved an MAE (mean absolute error) of 214.79 MW and an MAPE (mean absolute percentage error) of 2.08% for Scenario 1, and an MAE of 181.63 MW and MAPE of 1.89% for Scenario 2. Conversely, the RNN-LSTM model obtained an MAE of 226.76 MW and an MAPE of 2.13% for Scenario 3. Furthermore, given the expanded dataset in Scenario 3, we can anticipate even higher precision in the results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3