Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand

Author:

Chapagain Kamal,Kittipiyakul SomsakORCID,Kulthanavit Pisut

Abstract

Accurate electricity demand forecasting for a short horizon is very important for day-to-day control, scheduling, operation, planning, and stability of the power system. The main factors that affect the forecasting accuracy are deterministic variables and weather variables such as types of days and temperature. Due to the tropical climate of Thailand, the marginal impact of weather variables on electricity demand is worth analyzing. Therefore, this paper primarily focuses on the impact of temperature and other deterministic variables on Thai electricity demand. Accuracy improvement is also considered during model design. Based on the characteristics of demand, the overall dataset is divided into four different subgroups and models are developed for each subgroup. The regression models are estimated using Ordinary Least Square (OLS) methods for uncorrelated errors, and General Least Square (GLS) methods for correlated errors, respectively. While Feed Forward Artificial Neural Network (FF-ANN) as a simple Deep Neural Network (DNN) is estimated to compare the accuracy with regression methods, several experiments conducted for determination of training length, selection of variables, and the number of neurons show some major findings. The first finding is that regression methods can have better forecasting accuracy than FF-ANN for Thailand’s dataset. Unlike much existing literature, the temperature effect on Thai electricity demand is very interesting because of their linear relationship. The marginal impacts of temperature on electricity demand are also maximal at night hours. The maximum impact of temperature during night hours happens at 11 p.m., is 300 MW/ ° C, about 4 % rise in demand while during day hours, the temperature impact is only 10 MW/ ° C to 200 MW/ ° C about 1.4 % to 2.6 % rise.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference70 articles.

1. State of residential energy consumption in Southest Asia: Need to promote smart appliances because urban household consumption is higher than some develped countries;Murakoshi;ECEEE Summer Study Proc.,2017

2. Electricity Consumption Forecasting in Thailand Using an Artificial Neural Network and Multiple Linear Regression

3. Key Indicators for Asia and the Pacific 2017;Online,2017

4. An Energy-Efficient Architecture for the Internet of Things (IoT)

5. Electricity and the Fourth Industrial Revolutionhttps://www.researchgate.net/publication/324876698_ELECTRICITY_AND_THE_FOURTH_INDUSTRIAL_REVOLUTION

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3