Short-Term Electricity Demand Forecasting Using Deep Neural Networks: An Analysis for Thai Data

Author:

Chapagain Kamal1ORCID,Gurung Samundra1,Kulthanavit Pisut2,Kittipiyakul Somsak3ORCID

Affiliation:

1. School of Engineering, Kathmandu University, Dhulikhel P.O. Box 6250, Nepal

2. Faculty of Economics, Thammasat University, Bangkok 10200, Thailand

3. Computer Engineering, College of Innovative Technology and Engineering, Dhurakij Pundit University, Bangkok 10210, Thailand

Abstract

Electricity demand forecasting plays a significant role in energy markets. Accurate prediction of electricity demand is the key factor in optimizing power generation and consumption, saving energy resources, and determining energy prices. However, integrating energy mix scenarios, including solar and wind power, which are highly nonlinear and seasonal, into an existing grid increases the uncertainty of generation, creating additional challenges for precise forecasting. To tackle such challenges, state-of-the-art methods and algorithms have been implemented in the literature. Artificial Intelligence (AI)-based deep learning models can effectively handle the information of long time-series data. Based on patterns identified in datasets, various scenarios can be developed. In this paper, several models were constructed and tested using deep AI networks in two different scenarios: Scenario1 used data for weekdays, excluding holidays, while Scenario2 used the data without exclusion. To find the optimal configuration, the models were trained and tested within a large space of alternative hyperparameters. We used an Artificial Neural Network (ANN)-based Feedforward Neural Network (FNN) to show the minimum prediction error for Scenario1 and a Recurrent Neural Network (RNN)-based Gated Recurrent Network (GRU) to show the minimum prediction error for Scenario2. From our results, it can be concluded that the weekday dataset in Scenario1 prepared by excluding weekends and holidays provides better forecasting accuracy compared to the holistic dataset approach used in Scenario2. However, Scenario2 is necessary for predicting the demand on weekends and holidays.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3