Abstract
In this study, functionality of Gryllusbimaculatus (GB) fermented by Bacillus and Lactobacillus strain was investigated. GB was fermented by each of the following strains: probiotic Bacillus amyloliquefaciens MKSK-J1 (SKGB), probiotic Lactobacillus plantarum MKHA15 (HAGB), Bacillus amyloliquefaciens MKSE (SEGB), and Lactobacillus plantarum KCTC 3103 (LPGB). Fermentation was carried out at 35 °C for 24 h. In HAGB, complete inhibition of α-glucosidase and 3-hydroxy-methyl glutaryl-coenzyme A (HMG-CoA) reductase occurred (101.94% and 120.89%, respectively), and superoxide dismutase (SOD)-like activity (IC50) was significantly low (22.37 mg/mL). After in vitro digestion, SOD-like activity was the highest in HAGB (21.18%). In SKGB, reducing power (EC50) was significantly low (0.29 mg/mL). After in vitro digestion, the reducing was also highest in SKGB (86.06%). Fermentation enhanced the bioactivity of GB; in particular, MKHA15 was found to have great potential as a starter in the production of fermented GB, as it would offer multi-health functions, including antidiabetic, anticholesterol, and antioxidant activity.
Funder
National Research Foundation of Korea
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献