Abstract
The energetic usage of fuels from renewable sources or waste material is associated with controlled combustion processes with industrial burner equipment. For the observation of such processes, camera systems are increasingly being used. With additional completion by an appropriate image processing system, camera observation of controlled combustion can be used for closed-loop process control giving leverage for optimization and more efficient usage of fuels. A key element of a camera-based control system is the robust segmentation of each burners flame. However, flame instance segmentation in an industrial environment imposes specific problems for image processing, such as overlapping flames, blurry object borders, occlusion, and irregular image content. In this research, we investigate the capability of a deep learning approach for the instance segmentation of industrial burner flames based on example image data from a special waste incineration plant. We evaluate the segmentation quality and robustness in challenging situations with several convolutional neural networks and demonstrate that a deep learning-based approach is capable of producing satisfying results for instance segmentation in an industrial environment.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献