Abstract
In recent years, frequent forest fires have plagued countries all over the world, causing serious economic damage and human casualties. Faster and more accurate detection of forest fires and timely interventions have become a research priority. With the advancement in deep learning, fully convolutional network architectures have achieved excellent results in the field of image segmentation. More researchers adopt these models to segment flames for fire monitoring, but most of the works are aimed at fires in buildings and industrial scenarios. However, there are few studies on the application of various fully convolutional models to forest fire scenarios, and comparative experiments are inadequate. In view of the above problems, on the basis of constructing the dataset with remote-sensing images of forest fires captured by unmanned aerial vehicles (UAVs) and the targeted optimization of the data enhancement process, four classical semantic segmentation models and two backbone networks are selected for modeling and testing analysis. By comparing inference results and the evaluation indicators of models such as mPA and mIoU, we can find out the models that are more suitable for forest fire segmentation scenarios. The results show that the U-Net model with Resnet50 as a backbone network has the highest segmentation accuracy of forest fires with the best comprehensive performance, and is more suitable for scenarios with high-accuracy requirements; the DeepLabV3+ model with Resnet50 is slightly less accurate than U-Net, but it can still ensure a satisfying segmentation performance with a faster running speed, which is suitable for scenarios with high real-time requirements. In contrast, FCN and PSPNet have poorer segmentation performance and, hence, are not suitable for forest fire detection scenarios.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献