Author:
Landgraf S.,Hillemann M.,Aberle M.,Jung V.,Ulrich M.
Abstract
Abstract. In many industrial processes, such as power generation, chemical production, and waste management, accurately monitoring industrial burner flame characteristics is crucial for safe and efficient operation. A key step involves separating the flames from the background through binary segmentation. Decades of machine vision research have produced a wide range of possible solutions, from traditional image processing to traditional machine learning and modern deep learning methods. In this work, we present a comparative study of multiple segmentation approaches, namely Global Thresholding, Region Growing, Support Vector Machines, Random Forest, Multilayer Perceptron, U-Net, and DeepLabV3+, that are evaluated on a public benchmark dataset of industrial burner flames. We provide helpful insights and guidance for researchers and practitioners aiming to select an appropriate approach for the binary segmentation of industrial burner flames and beyond. For the highest accuracy, deep learning is the leading approach, while for fast and simple solutions, traditional image processing techniques remain a viable option.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献