Deep learning-based image segmentation for instantaneous flame front extraction

Author:

Strässle Ruben M.ORCID,Faldella Filippo,Doll UlrichORCID

Abstract

AbstractThis paper delves into the methodology employed in examining lean premixed turbulent flame fronts extracted from Planar Laser Induced Fluorescence (PLIF) images at elevated pressures. In such flow regimes, the PLIF signal suffers from significant collisional quenching, typically resulting in image data with low signal-to-noise ratio (SNR). This poses severe difficulties for conventional flame front extraction algorithms based on intensity gradients and requires intense user intervention to yield acceptable results. In this work, we propose Convolutional Neural Network (CNN)-based Deep Learning (DL) models as an alternative to problem specific conventional methods. The pretrained DL models were fine-tuned, employing data augmentation, on a small annotated dataset including a variety of conditions between SNR $$\approx$$ 1.6 to 2.6 and subsequently evaluated. All DL models significantly outperformed the best-scoring conventional implementation both quantitatively and visually, while having similar inference times. IoU-scores and Recall values were found to be up to a factor $$\approx$$ 1.2 and $$\approx$$ 2.5 higher, respectively, with $$\approx$$ 1.15 times improved Precision. Small-scale structures were captured much better with fewer erroneous predictions, becoming particularly pronounced for the lower SNR data investigated. Moreover, by applying artificially modeled noise, it was shown that the range of image conditions in terms of SNR that can be reliably processed extends well beyond the images included in the training data, and satisfactory segmentation performances were found for SNR as low as $$\approx$$ 1.1. The presented DL-based flame front detection algorithm marks a methodology with significantly increased detection performance, while a similar computational effort for inference is achieved and the need for user-based parameter tuning is eliminated. It enables a very accurate extraction of instantaneous flame fronts in large image datasets where supervised processing is infeasible, unlocking unprecedented possibilities for the study of flame dynamics and instability mechanisms at industry-relevant conditions.

Funder

Horizon 2020

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3