Improving Leaf Area Index Retrieval Using Multi-Sensor Images and Stacking Learning in Subtropical Forests of China

Author:

Chen Yang,Ma Lixia,Yu DongshengORCID,Feng Kaiyue,Wang Xin,Song Jie

Abstract

The leaf area index (LAI) is a key indicator of the status of forest ecosystems that is important for understanding global carbon and water cycles as well as terrestrial surface energy balances and the impacts of climate change. Machine learning (ML) methods offer promising ways of generating spatially explicit LAI data covering large regions based on optical images. However, there have been few efforts to analyze the LAI in heterogeneous subtropical forests with complex terrain by fusing high-resolution multi-sensor data from the Sentinel-1 Synthetic Aperture Radar (SAR), Sentinel-2 Multi Spectral Instrument (MSI), and Advanced Land Observing Satellite-1 digital elevation model (DEM). Here, forest LAI mapping was performed by integrating the MSI, SAR, and DEM data using a stacking learning (SL) approach that incorporates distinct predictions from a set of optimized individual ML algorithms. The method’s performance was evaluated by comparison to field forest LAI measurements acquired in Xingguo and Gandong of subtropical China. The results showed that the addition of the SAR and DEM images using the SL model compared to the inputs of only optical images reduced the mean absolute error (MAE) and root mean square error (RMSE) by 26% and 18%, respectively, in Xingguo, and by 12% and 8%, respectively, in Gandong. Furthermore, the combination of all images had the best prediction performance. SL was found to be more robust and accurate than conventional individual ML models, while the MAE and RMSE were decreased by 71% and 64%, respectively, in Xingguo, and by 68% and 59%, respectively, in Gandong. Therefore, the SL model using the three-source data combination produced satisfied prediction accuracy with the coefficients of determination (R2), MAE, and RMSE of 0.96, 0.17, and 0.28, respectively, in Xingguo and 0.94, 0.30, and 0.47, respectively, in Gandong. This study revealed the potential of the SL algorithm for retrieving the forest LAI using multi-sensor data in areas with complex terrain.

Funder

National Science Foundation of China

Ecological geological survey of Yudu area, Ganzhou” project of the China Geological Survey

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3