Affiliation:
1. College of Forestry, Southwest Forestry University, Kunming 650224, China
2. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Abstract
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the main information sources, with Landsat 9 and DEM data as covariates, combined with 51 pieces of ground-measured data. Using random forest regression (RFR), boosted regression tree (BRT), k-nearest neighbor (KNN), Cubist, extreme gradient boosting (XGBoost), and Stacking-ridge regression (RR) machine learning methods, an aboveground carbon (AGC) storage model was constructed at a regional scale. The model evaluation indices were the coefficient of determination (R2), root mean square error (RMSE), and overall estimation accuracy (P). The results showed that (1) The best-fit semivariogram models for cdem, fdem, fndvi, pdem, and andvi were Gaussian models, while those for h1b7, h2b7, h3b7, and h4b7 were spherical models; (2) According to Pearson correlation analysis, the AGC of Dendrocalamus giganteus showed an extremely significant correlation (p < 0.01) with cdem and pdem from GEDI, and also showed an extremely significant correlation with andvi, h1b7, h2b7, h3b7, and h4b7 from ICESat-2/ATLAS; moreover, AGC showed a significant correlation (0.01 < p < 0.05) with fdem and fndvi from GEDI; (3) The estimation accuracy of the GEDI model was superior to that of the ICESat-2/ATLAS model; additionally, the estimation accuracy of the Stacking-RR model, which integrates GEDI and ICESat-2/ATLAS (R2 = 0.92, RMSE = 5.73 Mg/ha, p = 86.19%), was better than that of any single model (XGBoost, RFR, BRT, KNN, Cubist); (4) Based on the Stacking-RR model, the estimated AGC of Dendrocalamus giganteus within the study area was 1.02 × 107 Mg. The average AGC was 43.61 Mg/ha, with a maximum value of 76.43 Mg/ha and a minimum value of 15.52 Mg/ha. This achievement can serve as a reference for estimating other bamboo species using GEDI and ICESat-2/ATLAS remote sensing technologies and provide decision support for the scientific operation and management of Dendrocalamus giganteus.
Funder
National Key R&D Program of China
Joint Agricultural Project of Yunnan Province
National Natural Science Foundation of China