Estimation of the Aboveground Carbon Storage of Dendrocalamus giganteus Based on Spaceborne Lidar Co-Kriging

Author:

Yang Huanfen1ORCID,Qin Zhen1ORCID,Shu Qingtai1ORCID,Xi Lei2ORCID,Xia Cuifen1,Wu Zaikun1,Wang Mingxing1,Duan Dandan3

Affiliation:

1. College of Forestry, Southwest Forestry University, Kunming 650224, China

2. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the main information sources, with Landsat 9 and DEM data as covariates, combined with 51 pieces of ground-measured data. Using random forest regression (RFR), boosted regression tree (BRT), k-nearest neighbor (KNN), Cubist, extreme gradient boosting (XGBoost), and Stacking-ridge regression (RR) machine learning methods, an aboveground carbon (AGC) storage model was constructed at a regional scale. The model evaluation indices were the coefficient of determination (R2), root mean square error (RMSE), and overall estimation accuracy (P). The results showed that (1) The best-fit semivariogram models for cdem, fdem, fndvi, pdem, and andvi were Gaussian models, while those for h1b7, h2b7, h3b7, and h4b7 were spherical models; (2) According to Pearson correlation analysis, the AGC of Dendrocalamus giganteus showed an extremely significant correlation (p < 0.01) with cdem and pdem from GEDI, and also showed an extremely significant correlation with andvi, h1b7, h2b7, h3b7, and h4b7 from ICESat-2/ATLAS; moreover, AGC showed a significant correlation (0.01 < p < 0.05) with fdem and fndvi from GEDI; (3) The estimation accuracy of the GEDI model was superior to that of the ICESat-2/ATLAS model; additionally, the estimation accuracy of the Stacking-RR model, which integrates GEDI and ICESat-2/ATLAS (R2 = 0.92, RMSE = 5.73 Mg/ha, p = 86.19%), was better than that of any single model (XGBoost, RFR, BRT, KNN, Cubist); (4) Based on the Stacking-RR model, the estimated AGC of Dendrocalamus giganteus within the study area was 1.02 × 107 Mg. The average AGC was 43.61 Mg/ha, with a maximum value of 76.43 Mg/ha and a minimum value of 15.52 Mg/ha. This achievement can serve as a reference for estimating other bamboo species using GEDI and ICESat-2/ATLAS remote sensing technologies and provide decision support for the scientific operation and management of Dendrocalamus giganteus.

Funder

National Key R&D Program of China

Joint Agricultural Project of Yunnan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3