Forest Canopy Height Estimation by Integrating Structural Equation Modeling and Multiple Weighted Regression
Author:
Zhu Hongbo1, Zhang Bing12, Song Weidong12, Xie Qinghua3ORCID, Chang Xinyue1, Zhao Ruishan1
Affiliation:
1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China 2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China 3. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
Abstract
As an important component of forest parameters, forest canopy height is of great significance to the study of forest carbon stocks and carbon cycle status. There is an increasing interest in obtaining large-scale forest canopy height quickly and accurately. Therefore, many studies have aimed to address this issue by proposing machine learning models that accurately invert forest canopy height. However, most of the these approaches feature PolSAR observations from a data-driven viewpoint in the feature selection part of the machine learning model, without taking into account the intrinsic mechanisms of PolSAR polarization observation variables. In this work, we evaluated the correlations between eight polarization observation variables, namely, T11, T22, T33, total backscattered power (SPAN), radar vegetation index (RVI), the surface scattering component (Ps), dihedral angle scattering component (Pd), and body scattering component (Pv) of Freeman-Durden three-component decomposition, and the height of the forest canopy. On this basis, a weighted inversion method for determining forest canopy height under the view of structural equation modeling was proposed. In this study, the direct and indirect contributions of the above eight polarization observation variables to the forest canopy height inversion task were estimated based on structural equation modeling. Among them, the indirect contributions were generated by the interactions between the variables and ultimately had an impact on the forest canopy height inversion. In this study, the covariance matrix between polarization variables and forest canopy height was calculated based on structural equation modeling, the weights of the variables were calculated by combining with the Mahalanobis distance, and the weighted inversion of forest canopy height was carried out using PSO-SVR. In this study, some experiments were carried out using three Gaofen-3 satellite (GF-3) images and ICESat-2 forest canopy height data for some forest areas of Gaofeng Ridge, Baisha Lizu Autonomous County, Hainan Province, China. The results showed that T11, T33, and total backscattered power (SPAN) are highly correlated with forest canopy height. In addition, this study showed that determining the weights of different polarization observation variables contributes positively to the accurate estimation of forest canopy height. The forest canopy height-weighted inversion method proposed in this paper was shown to be superior to the multiple regression model, with a 26% improvement in r and a 0.88 m reduction in the root-mean-square error (RMSE).
Funder
National Natural Science Foundation of China China Postdoctoral Science Foundation
Reference75 articles.
1. Zhang, Y., Zhang, W., Ji, Y., and Zhao, H. (2023). Forest Height Estimation and Inversion Study of Satellite-Based X-Band InSAR Data, Geomatics and Information Science of Wuhan University. 2. Huang, K.-X., Xue, Z.-J., Wu, J.-C., Wang, H., Zhou, H.-Q., Xiao, Z.-B., Zhou, W., Cai, J.-F., Hu, L.-W., and Ren, J.-S. (2023). Water Use Efficiency of Five Tree Species and Its Relationships with Leaf Nutrients in a Subtropical Broad-Leaf Evergreen Forest of Southern China. Forests, 14. 3. Chen, Y., Ma, L., Yu, D., Feng, K., Wang, X., and Song, J. (2022). Improving Leaf Area Index Retrieval Using Multi-Sensor Images and Stacking Learning in Subtropical Forests of China. Remote Sens., 14. 4. Pandit, S., Tsuyuki, S., and Dube, T. (2018). Landscape-Scale Aboveground Biomass Estimation in Buffer Zone Community Forests of Central Nepal: Coupling In Situ Measurements with Landsat 8 Satellite Data. Remote Sens., 10. 5. Song, H., Zhou, H., Wang, H., Ma, Y., Zhang, Q., and Li, S. (2024). Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar. Remote Sens., 16.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|