Forest Canopy Height Estimation by Integrating Structural Equation Modeling and Multiple Weighted Regression

Author:

Zhu Hongbo1,Zhang Bing12,Song Weidong12,Xie Qinghua3ORCID,Chang Xinyue1,Zhao Ruishan1

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China

3. School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

Abstract

As an important component of forest parameters, forest canopy height is of great significance to the study of forest carbon stocks and carbon cycle status. There is an increasing interest in obtaining large-scale forest canopy height quickly and accurately. Therefore, many studies have aimed to address this issue by proposing machine learning models that accurately invert forest canopy height. However, most of the these approaches feature PolSAR observations from a data-driven viewpoint in the feature selection part of the machine learning model, without taking into account the intrinsic mechanisms of PolSAR polarization observation variables. In this work, we evaluated the correlations between eight polarization observation variables, namely, T11, T22, T33, total backscattered power (SPAN), radar vegetation index (RVI), the surface scattering component (Ps), dihedral angle scattering component (Pd), and body scattering component (Pv) of Freeman-Durden three-component decomposition, and the height of the forest canopy. On this basis, a weighted inversion method for determining forest canopy height under the view of structural equation modeling was proposed. In this study, the direct and indirect contributions of the above eight polarization observation variables to the forest canopy height inversion task were estimated based on structural equation modeling. Among them, the indirect contributions were generated by the interactions between the variables and ultimately had an impact on the forest canopy height inversion. In this study, the covariance matrix between polarization variables and forest canopy height was calculated based on structural equation modeling, the weights of the variables were calculated by combining with the Mahalanobis distance, and the weighted inversion of forest canopy height was carried out using PSO-SVR. In this study, some experiments were carried out using three Gaofen-3 satellite (GF-3) images and ICESat-2 forest canopy height data for some forest areas of Gaofeng Ridge, Baisha Lizu Autonomous County, Hainan Province, China. The results showed that T11, T33, and total backscattered power (SPAN) are highly correlated with forest canopy height. In addition, this study showed that determining the weights of different polarization observation variables contributes positively to the accurate estimation of forest canopy height. The forest canopy height-weighted inversion method proposed in this paper was shown to be superior to the multiple regression model, with a 26% improvement in r and a 0.88 m reduction in the root-mean-square error (RMSE).

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3