Study on the Differences between the Extraction Results of the Structural Parameters of Individual Trees for Different Tree Species Based on UAV LiDAR and High-Resolution RGB Images

Author:

You Haotian12ORCID,Tang Xu1ORCID,You Qixu1,Liu Yao1,Chen Jianjun1,Wang Feng1

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541006, China

2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541004, China

Abstract

Light Detection and Ranging (LiDAR) points and high-resolution RGB image-derived points have been successfully used to extract tree structural parameters. However, the differences in extracting individual tree structural parameters among different tree species have not been systematically studied. In this study, LiDAR data and images were collected using unmanned aerial vehicles (UAVs) to explore the differences in digital elevation model (DEM) and digital surface models (DSM) generation and tree structural parameter extraction for different tree species. It was found that the DEMs generated based on both forms of data, LiDAR and image, exhibited high correlations with the field-measured elevation, with an R2 of 0.97 and 0.95, and an RMSE of 0.24 and 0.28 m, respectively. In addition, the differences between the DSMs are small in non-vegetation areas, whereas the differences are relatively large in vegetation areas. The extraction results of individual tree crown width and height based on two kinds of data are similar when all tree species are considered. However, for different tree species, the Cinnamomum camphora exhibits the greatest accuracy in terms of crown width extraction, with an R2 of 0.94 and 0.90, and an RMSE of 0.77 and 0.70 m for LiDAR and image points, respectively. In comparison, for tree height extraction, the Magnolia grandiflora exhibits the highest accuracy, with an R2 of 0.89 and 0.90, and an RMSE of 0.57 and 0.55 m for LiDAR and image points, respectively. The results indicate that both LiDAR and image points can generate an accurate DEM and DSM. The differences in the DEMs and DSMs between the two data types are relatively large in vegetation areas, while they are small in non-vegetation areas. There are significant differences in the extraction results of tree height and crown width between the two data sets among different tree species. The results will provide technical guidance for low-cost forest resource investigation and monitoring.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Guangxi Science and Technology Base and Talent Project

BaGuiScholars program of the provincial government of Guangxi

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3