Fine Classification of Urban Tree Species Based on UAV-Based RGB Imagery and LiDAR Data

Author:

Wu Jingru1,Man Qixia1,Yang Xinming2,Dong Pinliang3,Ma Xiaotong1,Liu Chunhui1,Han Changyin1

Affiliation:

1. College of Geography and Environment, Shandong Normal University, Jinan 250358, China

2. Jinan Environmental Research Institute, Jinan 250100, China

3. Department of Geography and the Environment, University of North Texas, Denton, TX 76203, USA

Abstract

Rapid and accurate classification of urban tree species is crucial for the protection and management of urban ecology. However, tree species classification remains a great challenge because of the high spatial heterogeneity and biodiversity. Addressing this challenge, in this study, unmanned aerial vehicle (UAV)-based high-resolution RGB imagery and LiDAR data were utilized to extract seven types of features, including RGB spectral features, texture features, vegetation indexes, HSV spectral features, HSV texture features, height feature, and intensity feature. Seven experiments involving different feature combinations were conducted to classify 10 dominant tree species in urban areas with a Random Forest classifier. Additionally, Plurality Filling was applied to further enhance the accuracy of the results as a post-processing method. The aim was to explore the potential of UAV-based RGB imagery and LiDAR data for tree species classification in urban areas, as well as evaluate the effectiveness of the post-processing method. The results indicated that, compared to using RGB imagery alone, the integrated LiDAR and RGB data could improve the overall accuracy and the Kappa coefficient by 18.49% and 0.22, respectively. Notably, among the features based on RGB, the HSV and its texture features contribute most to the improvement of accuracy. The overall accuracy and Kappa coefficient of the optimal feature combination could achieve 73.74% and 0.70 with the Random Forest classifier, respectively. Additionally, the Plurality Filling method could increase the overall accuracy by 11.76%, which could reach 85.5%. The results of this study confirm the effectiveness of RGB imagery and LiDAR data for urban tree species classification. Consequently, these results could provide a valuable reference for the precise classification of tree species using UAV remote sensing data in urban areas.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3