Insulator Extraction from UAV LiDAR Point Cloud Based on Multi-Type and Multi-Scale Feature Histogram

Author:

Chen Maolin12ORCID,Li Jiyang1,Pan Jianping1,Ji Cuicui1,Ma Wei1

Affiliation:

1. School of Smart City, Chongqing Jiaotong University, Chongqing 400047, China

2. Technology Innovation Center for Spatiotemporal Information and Equipment of Intelligent City, Ministry of Natural Resources, Chongqing 400047, China

Abstract

Insulators are key components to ensure the normal operation of power facilities in transmission corridors. Existing insulator identification methods mainly use image data and lack the acquisition of three-dimensional information. This paper proposes an efficient insulator extraction method based on UAV (unmanned aerial vehicle) LiDAR (light detection and ranging) point cloud, using five histogram features: horizontal density (HD), horizontal void (HV), horizontal width (HW), vertical width (VW) and vertical void (VV). Firstly, a voxel-based method is employed to roughly extract power lines and pylons from the original point cloud. Secondly, the VV histogram is used to categorize the pylons into suspension and tension types, and the HD histogram is used to locate the tower crossarm and further refine the roughly extracted powerlines. Then, for the suspension tower, insulators are segmented based on the HV histogram and HD difference histogram. For the tension tower, the HW histogram is used to recognize the jumper conductor (JC) and transmission conductor (TC) from the power line. The HW histogram and VW histogram are used to extract the tension insulator in the TC and suspension insulator in the JC, respectively. Finally, considering the problem of setting a suitable grid width when constructing the feature histogram, an adaptive method of multi-scale histograms is proposed to refine the extraction result. Two 220 kV long transmission lines are used for the validation, and the overall object-based accuracy for suspension and tension towers are 100% and 97.3%, respectively. Compared with the point feature-based method, the mean F1 score of the proposed method improved by 0.3, and the runtime for each tower is within 2 s.

Funder

National Natural Science Foundation of China

Key R&D Program of Ningxia Autonomous Region

Open Project of Technology Innovation Center for Spatiotemporal Information and Equipment of Intelligent City

Chongqing Natural Science Foundation

Chongqing Jiaotong University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3