Influence of Main Flight Parameters on the Performance of Stand-Level Growing Stock Volume Inventories Using Budget Unmanned Aerial Vehicles

Author:

Lisańczuk Marek1,Krok Grzegorz1ORCID,Mitelsztedt Krzysztof1ORCID,Bohonos Justyna1

Affiliation:

1. Department of Geomatics, Forest Research Institute, Braci Leśnej 3 Street, 05-090 Sękocin Stary, Poland

Abstract

Low-altitude aerial photogrammetry can be an alternative source of forest inventory data and a practical tool for rapid forest attribute updates. The availability of low-cost unmanned aerial systems (UASs) and continuous technological advances in terms of their flight duration and automation capabilities makes these solutions interesting tools for supporting various forest management needs. However, any practical application requires a priori empirical validation and optimization steps, especially if it is to be used under different forest conditions. This study investigates the influence of the main flight parameters, i.e., ground sampling distance and photo overlap, on the performance of individual tree detection (ITD) stand-level forest inventories, based on photogrammetric data obtained from budget unmanned aerial systems. The investigated sites represented the most common forest conditions in the Polish lowlands. The results showed no direct influence of the investigated factors on growing stock volume predictions within the analyzed range, i.e., overlap from 80 × 80 to 90 × 90% and GSD from 2 to 6 cm. However, we found that the tree detection ratio had an influence on estimation errors, which ranged from 0.6 to 15.3%. The estimates were generally coherent across repeated flights and were not susceptible to the weather conditions encountered. The study demonstrates the suitability of the ITD method for small-area forest inventories using photogrammetric UAV data, as well as its potential optimization for larger-scale surveys.

Funder

Forest Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3