An Efficient Framework for Autonomous UAV Missions in Partially-Unknown GNSS-Denied Environments

Author:

Mugnai Michael1ORCID,Teppati Losé Massimo1ORCID,Herrera-Alarcón Edwin1ORCID,Baris Gabriele1ORCID,Satler Massimo1ORCID,Avizzano Carlo1ORCID

Affiliation:

1. Institute of Mechanical Intelligence, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy

Abstract

Nowadays, multirotors are versatile systems that can be employed in several scenarios, where their increasing autonomy allows them to achieve complex missions without human intervention. This paper presents a framework for autonomous missions with low-cost Unmanned Aerial Vehicles (UAVs) in Global Navigation Satellite System-denied (GNSS-denied) environments. This paper presents hardware choices and software modules for localization, perception, global planning, local re-planning for obstacle avoidance, and a state machine to dictate the overall mission sequence. The entire software stack has been designed exploiting the Robot Operating System (ROS) middleware and has been extensively validated in both simulation and real environment tests. The proposed solution can run both in simulation and in real-world scenarios without modification thanks to a small sim-to-real gap with PX4 software-in-the-loop functionality. The overall system has competed successfully in the Leonardo Drone Contest, an annual competition between Italian Universities with a focus on low-level, resilient, and fully autonomous tasks for vision-based UAVs, proving the robustness of the entire system design.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3