Optimal Multi-Sensor Obstacle Detection System for Small Fixed-Wing UAVs

Author:

Portugal Marta1,Marta André C.1ORCID

Affiliation:

1. IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

Abstract

The safety enhancement of small fixed-wing UAVs regarding obstacle detection is addressed using optimization techniques to find the best sensor orientations of different multi-sensor configurations. Four types of sensors for obstacle detection are modeled, namely an ultrasonic sensor, laser rangefinder, LIDAR, and RADAR, using specifications from commercially available models. The simulation environment developed includes collision avoidance with the Potential Fields method. An optimization study is conducted using a genetic algorithm that identifies the best sensor sets and respective orientations relative to the UAV longitudinal axis for the highest obstacle avoidance success rate. The UAV performance is found to be critical for the solutions found, and its speed is considered in the range of 5–15 m/s with a turning rate limited to 45°/s. Forty collision scenarios with both stationary and moving obstacles are randomly generated. Among the combinations of the sensors studied, 12 sensor sets are presented. The ultrasonic sensors prove to be inadequate due to their very limited range, while the laser rangefinders benefit from extended range but have a narrow field of view. In contrast, LIDAR and RADAR emerge as promising options with significant ranges and wide field of views. The best configurations involve a front-facing LIDAR complemented with two laser rangefinders oriented at ±10° or two RADARs oriented at ±28°.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference37 articles.

1. Mohsan, S.A.H., Khan, M.A., Noor, F., Ullah, I., and Alsharif, M.H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6.

2. Polaris Market Research (2023, September 13). Commercial UAV Market Share, Size, Trends & Industry Analysis Report By Type; By End-Use; By Region; Segment Forecast, 2021–2028. Available online: https://www.polarismarketresearch.com/industry-analysis/commercial-uav-market.

3. Security, Privacy, and Safety Aspects of Civilian Drones: A Survey;Altawy;ACM Trans. Cyber-Phys. Syst.,2016

4. Swarms of Unmanned Aerial Vehicles—A Survey;Tahir;J. Ind. Inf. Integr.,2019

5. Swarm formation morphing for congestion-aware collision avoidance;Yasin;Helyion,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3