Abstract
Recently, unmanned aerial vehicles (UAVs), also known as drones, have come in a great diversity of several applications such as military, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, wireless communication and aerial surveillance. The drone industry has been getting significant attention as a model of manufacturing, service and delivery convergence, introducing synergy with the coexistence of different emerging domains. UAVs offer implicit peculiarities such as increased airborne time and payload capabilities, swift mobility, and access to remote and disaster areas. Despite these potential features, including extensive variety of usage, high maneuverability, and cost-efficiency, drones are still limited in terms of battery endurance, flight autonomy and constrained flight time to perform persistent missions. Other critical concerns are battery endurance and the weight of drones, which must be kept low. Intuitively it is not suggested to load them with heavy batteries. This study highlights the importance of drones, goals and functionality problems. In this review, a comprehensive study on UAVs, swarms, types, classification, charging, and standardization is presented. In particular, UAV applications, challenges, and security issues are explored in the light of recent research studies and development. Finally, this review identifies the research gap and presents future research directions regarding UAVs.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
297 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献