Affiliation:
1. Certification Management Office of the Ministry of Information and Cybersecurity, National Information Center, Beijing 100045, China
2. Beijing Institute of Electronic Science and Technology (BESTI), Beijing 100070, China
Abstract
Unmanned aerial vehicles (UAVs) have received widespread attention due to their flexible deployment characteristics. Automated airports equipped with UAVs are expected to become important equipment for improving quality and reducing costs in many inspection scenarios. This paper focuses on the automated inspection business of UAVs dispatched by automated airports in highway scenarios. On the basis of considering the shape of highway curves, inspection targets, and the energy consumption characteristics of UAVs, planning the flight parameters of UAVs is of great significance for ensuring the effectiveness of the inspection process. This paper first sets the inspection path points for the UAV based on highway curves, and then proposes an efficient heuristic method for the nonlinear non-convex parameter optimization problem, through which the parameters of the UAV’s inspection altitude, hovering altitude, and flight speed are planned. Simulation and analysis show that the proposed method possesses good parameter planning efficiency. By combining several existing trajectory planning methods, e.g., the traversal method, the deep Q-network based method, and the genetic method, it can be concluded that the proposed method in this paper has better overall planning performance including planning efficiency and inspection effectiveness.
Funder
2023 Guizhou Provincial Science and Technology Support Plan Project
Fundamental Research Funds for the Central Universities
Beijing Natural Science Foundation
“Advanced and sophisticated” discipline construction project of universities in Beijing
China National Key R&D Program
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献