Event-Triggered Hierarchical Planner for Autonomous Navigation in Unknown Environment

Author:

Chen Changhao1ORCID,Song Bifeng12,Fu Qiang1ORCID,Xue Dong1,He Lei1ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China

Abstract

End-to-end deep neural network (DNN)-based motion planners have shown great potential in high-speed autonomous UAV flight. Yet, most existing methods only employ a single high-capacity DNN, which typically lacks generalization ability and suffers from high sample complexity. We propose a novel event-triggered hierarchical planner (ETHP), which exploits the bi-level optimization nature of the navigation task to achieve both efficient training and improved optimality. Specifically, we learn a depth-image-based end-to-end motion planner in a hierarchical reinforcement learning framework, where the high-level DNN is a reactive collision avoidance rerouter triggered by the clearance distance, and the low-level DNN is a goal-chaser that generates the heading and velocity references in real time. Our training considers the field-of-view constraint and explores the bi-level structural flexibility to promote the spatio–temporal optimality of planning. Moreover, we design simple yet effective rules to collect hindsight experience replay buffers, yielding more high-quality samples and faster convergence. The experiments show that, compared with a single-DNN baseline planner, ETHP significantly improves the success rate and generalizes better to the unseen environment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3