The Effects of Starch Molecular Fine Structure on Thermal and Digestion Properties of Rice Starch

Author:

Li Cheng,Yu WenwenORCID,Gilbert Robert G.ORCID

Abstract

Whole white rice is a major staple food for human consumption, with its starch digestion rate and location in the gastrointestinal tract having a critical role for human health. Starch has a multi-scale structure, which undergoes order-disorder transitions during rice cooking, and this structure is a major determinant of its digestibility. The length distributions of amylose and amylopectin chains are important determinants of rice starch gelatinization properties. Starch chain-length and molecular-size distributions are important determinants of nucleation and crystal growth rates, as well as of intra- and intermolecular interactions during retrogradation. A number of first-order kinetics models have been developed to fit starch digestograms, producing new information on the structural basis for starch digestive characteristics of cooked whole rice. Different starch digestible fractions with distinct digestion patterns have been found for the digestion of rice starch in fully gelatinized and retrograded states, the digestion kinetics of which are largely determined by starch fine molecular structures. Current insights and future directions to better understand digestibility of starch in whole cooked rice are summarized, pointing to ways of developing whole rice into a healthier food by way of having slower starch digestibility.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Entrepreneurship and Innovation Team program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3