Experimental Study Demonstrating a Cost-Effective Approach for Generating 3D-Enhanced Models of Sediment Flushing Cones Using Model-Based SFM Photogrammetry

Author:

Haghjouei HadiORCID,Kantoush Sameh A.ORCID,Beiramipour Sepideh,Rahimpour MajidORCID,Qaderi Kourosh

Abstract

Accurate measurements of sediment flushing cone geometry (SFCG) are essential for determining sediment removal efficiency in reservoirs. SFCG measurements are related to the point-to-point height that affects bathymetry accuracy, and they are used to develop a digital elevation model (DEM). Conventional bathymetry monitoring techniques require a longer time for data processing and output data with insufficient accuracy despite being inexpensive and simple. In the current research, a close-range photogrammetric method called the structure from motion (SFM) method was investigated to determine the SFCG in an experimental study. The regular geometric shape of a cube was used to verify the SFM. Additionally, measurements between model control points (MCPs) on the flushed sediment bed were compared with those from the SFM method. The results indicated that the calculated SFM values were consistent with the measured values. To determine the SFCG, two sets of images were captured with 70% average overlapping before and after the completion of each test. After processing and post-processing via the SFM tool AgiSoft Metashape, a georeferenced 3D model was achieved. The accuracy of the surveyed data in terms of the dimensions, cross-sections, and temporal developments of the sediment flushing cone was investigated to verify the SFM method. Finally, the results revealed good agreement (R2=0.99 and average error of 0.03–0.74 mm) between the DEMs created by the SFM method and the actual model.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3