Numerical Study of Discharge Adjustment Effects on Reservoir Morphodynamics and Flushing Efficiency: An Outlook for the Unazuki Reservoir, Japan

Author:

Esmaeili TaymazORCID,Sumi TetsuyaORCID,Kantoush Sameh A.ORCID,Kubota Yoji,Haun StefanORCID,Rüther Nils

Abstract

The Unazuki Reservoir is located on the Kurobe River, which is influenced by a catchment with one of the highest sediment yields in Japan. Due to a sufficiently available discharge during flood events, annual sediment flushing with full water-level drawdown (i.e., free-flow sediment flushing) is conducted to preserve the effective storage capacity of the reservoir. Nevertheless, the upstream half of the reservoir (i.e., study segment) suffers from the excessive deposition of coarser sediments. Remobilization of these coarser materials and their transportation further downstream of the reservoir is a priority of reservoir owners for sustainable reservoir functions, such as flood-risk management and hydroelectric energy generation. In this paper, an already conducted sediment-flushing operation in the Unazuki Reservoir is simulated, and its effects on sediment scouring from the study segment of the reservoir together with changes in bed morphodynamics are presented. A fully 3D numerical model using the finite volume approach in combination with a wetting/drying algorithm was utilized to reproduce the hydrodynamics and bed changes using the available onsite data. Afterwards, the effects of discharge adjustment on the morphological bed changes and flushing efficiency were analysed in the study segment using an additional single-discharge pulse supplied from upstream reservoirs. Simulation results showed that an approximately 75% increase in the average discharge during the free-flow stage changed the dominant morphological process from deposition into an erosive mode in the study segment. If the increase in discharge reaches up to 100%, the flushed volume of sediments from the target segment can increase 2.9 times compared with the initiation of the erosive mode.

Funder

Ministry of Education, Culture, Sports, Science, and Technology of Japan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents

2. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use;Morris,1998

3. Flushing sediment through reservoirs

4. Prediction of Concerted Sediment Flushing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3