Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed

Author:

Matta Erica1ORCID,Bresciani Mariano1ORCID,Tellina Giulio1,Schenk Karin2,Bauer Philipp2,Von Trentini Fabian2,Ruther Nils3,Bartosova Alena4

Affiliation:

1. CNR-IREA, National Research Council of Italy-Institute for the Electromagnetic Sensing of the Environment, Via Corti, 12, 20133 Milan, Italy

2. EOMAP, Earth Observation and Environmental Services, Schlosshof 4a, 82229 Seefeld, Germany

3. Department of Civil and Environmental Engineering, NTNU, Norwegian University of Science and Technology, Vassbygget, 405, Valgrinda, S. P. Andersens veg 5, 7034 Trondheim, Norway

4. SMHI, Swedish Meteorological and Hydrological Institute, SE-601 76 Norrköping, Sweden

Abstract

It is increasingly important to know the water quality of a reservoir, given the prospect of an environment poor in water reserves, which are based on intense and short-lived precipitation events. In this work, vegetation indices (NDVI, EVI) and bio-physical parameters of the vegetation (LAI, FC), meteorological variables, and hydrological data are considered as possible drivers of the spatial and temporal variability of water quality (WQ) of the Banja reservoir (Albania). Sentinel-2 and Landsat 8/9 images are analyzed to derive WQ parameters and vegetation properties, while the HYPE model provides hydrological variables. Timeseries of the considered variables are examined using graphical and statistical methods and correlations among the variables are computed for a five-year period (2016–2022). The added-value of integrating earth observation derived data is demonstrated in the analysis of specific time periods or precipitation events. Significant positive correlations are found between water turbidity and hydrological parameters such as river discharge or runoff (0.55 and 0.40, respectively), while negative correlations are found between water turbidity and vegetation descriptors (−0.48 to −0.56). The possibility of having easy-to-use tools (e.g., web portal) for the analysis of multi-source data in an interactive way, facilitates the planning of hydroelectric plants management operations.

Funder

EU Horizon 2020 program with the projects HYPOS

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3