Abstract
In this paper, the natural frequencies (NFs) identification by finite element method (FEM) is applied to a two degrees-of-freedom (2-DOF) planar robot, and its validation through a novel experimental methodology, the Multiple Signal Classification (MUSIC) algorithm, is presented. The experimental platforms are two different 2-DOF planar robots with different materials for the links and different types of actuators. The FEM is carried out using ANSYS™ software for the experiments, with vibration signal analysis by MUSIC algorithm. The advantages of the MUSIC algorithm against the commonly used fast Fourier transform (FFT) method are also presented for a synthetic signal contaminated by three different noise levels. The analytical and experimental results show that the proposed methodology identifies the NFs of a high-resolution robot even when they are very closed and when the signal is embedded in high-level noise. Furthermore, the results show that the proposed methodology can obtain a high-frequency resolution with a short sample data set. Identifying the NFs of robots is useful for avoiding such frequencies in the path planning and in the selection of controller gains that establish the bandwidth.
Funder
Consejo Nacional de Ciencia y Tecnología, México
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献