Optimized Design of 1 MHz Intermediate Bus Converter Using GaN HEMT for Aerospace Applications

Author:

Maset EnriqueORCID,Ejea Juan Bta.ORCID,Ferreres Agustín,Lizán José Luis,Blanes Jose ManuelORCID,Sanchis-Kilders EstebanORCID,Garrigós AusiasORCID

Abstract

This paper presents the possibility of using Gallium Nitride (GaN) high-electron-mobility transistors (HEMTs) instead of the conventional silicon metal oxide semiconductor field effect transistor (MOSFET) to implement a high-frequency intermediate bus converter (IBC) as part of a typical distributed power architecture used in a space power application. The results show that processing the power at greater frequencies is possible with a reduction in mass and without impacting the system efficiency. The proposed solution was experimentally validated by the implementation of a 1 MHz zero-voltage and zero-current switching (ZVZCS) current-fed half-bridge converter with synchronous rectification compared with the same converter using silicon as the standard technology on power switches and working at 100 kHz. In conclusion, the replacement of silicon (Si) transistors by GaN HEMTs is feasible, and GaN HEMTs are promising next-generation devices in the power electronics field and can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters. The best physical properties of GaN HEMTs, such as inherent radiation hardness, low on resistance and parasitic capacitances, allow them to switch at higher frequencies with high efficiency achieving higher power density. We present an optimized design procedure to guaranty the zero-voltage switching condition that enables the power density to be increased without a penalization of the efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3