Parasitic Loop Inductances Reduction in the PCB Layout in GaN-Based Power Converters Using S-Parameters and EM Simulations

Author:

Pace LorisORCID,Idir NadirORCID,Duquesne Thierry,De Jaeger Jean-Claude

Abstract

Due to the high switching speed of Gallium Nitride (GaN) transistors, parasitic inductances have significant impacts on power losses and electromagnetic interferences (EMI) in GaN-based power converters. Thus, the proper design of high-frequency converters in a simulation tool requires accurate electromagnetic (EM) modeling of the commutation loops. This work proposes an EM modeling of the parasitic inductance of a GaN-based commutation cell on a printed circuit board (PCB) using Advanced Design System (ADS®) software. Two different PCB designs of the commutation loop, lateral (single-sided) and vertical (double-sided) are characterized in terms of parasitic inductance contribution. An experimental approach based on S-parameters, the Cold FET technique and a specific calibration procedure is developed to obtain reference values for comparison with the proposed models. First, lateral and vertical PCB loop inductances are extracted. Then, the whole commutation loop inductances including the packaging of the GaN transistors are determined by developing an EM model of the device’s internal parasitic. The switching waveforms of the GaN transistors in a 1 MHz DC/DC converter are given for the different commutation loop designs. Finally, a discussion is proposed on the presented results and the development of advanced tools for high-frequency GaN-based power electronics design.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3