Improving the Stability of Lycopene from Chemical Degradation in Model Beverage Emulsions: Impact of Hydrophilic Group Size of Emulsifier and Antioxidant Polarity

Author:

Kim Jinhyuk,Choi Seung JunORCID

Abstract

The chemical stability of the lipophilic bioactives encapsulated in emulsions can be influenced by emulsion droplet interfacial characteristics as well as by the ability of antioxidants incorporated in emulsion to prevent the degradation of the encapsulated compounds. Therefore, this study evaluated the effects of the interfacial characteristics of emulsions and the polarity of antioxidants on the storage stability of lycopene in emulsions. Emulsions with 5% (w/w) oil containing lycopene (30 µmol/kg emulsion) were prepared using a series of polyethylene glycol acyl ether-type emulsifiers through microfluidization. Change in lycopene content in emulsions was monitored by high performance liquid chromatography. Our findings show that the hydrophilic group size (or length) of emulsifiers and the emulsifier concentration at the interfacial film play a role, albeit minor, in controlling the storage stability of lycopene encapsulated in emulsions. Lipophilic (tert-butylhydroquinone (TBHQ)) and amphiphilic (lauryl gallate) antioxidants similarly improved the storage stability of lycopene in emulsions from acid- and radical-mediated degradation, independent of the characteristics of interfacial films of emulsions. However, TBHQ inhibited the degradation of lycopene in emulsions more effectively than lauryl gallate under conditions intended to accelerate the acid-mediated degradation of lycopene. Therefore, our findings can provide helpful information about what type of emulsifiers and antioxidants can be chosen for preparing food emulsions capable of maximizing the stability of lycopene encapsulated therein.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3