Abstract
After the development of 3D printing, the post-processing of the 3D-printed materials has been continuously studied, and with the recent expansion of the application of 3D printing, interest in it is increasing. Among various surface-machining processes, chemical mechanical polishing (CMP) is a technology that can effectively provide a fine surface via chemical reactions and mechanical material removal. In this study, two polishing methods were evaluated for the reduction of surface roughness and glossiness of a stereolithography apparatus (SLA) 3D-printed ABS (acrylonitrile butadiene styrene)-like resin. Experiments were conducted on the application of CMP directly to the 3D-printed ABS-like resin (one-step polishing), and on the application of sanding (#2000) and CMP sequentially (two-step polishing). The one-step polishing experiments showed that it took a considerable period of time to remove waviness on the surface of the as-3D printed specimen using CMP. However, in the case of two-step polishing, surface roughness was reduced, and glossiness was increased faster than in the case of one-step polishing via sanding and CMP. Consequently, the experimental results show that the two-step polishing method reduced roughness more efficiently than the one-step polishing method.
Funder
National Research Foundation of Korea
Busan Metropolitan City
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献