A Rapid Prototyping Approach for Multi-Material, Reversibly Sealed Microfluidics

Author:

Halwes Michael12ORCID,Stamp Melanie12ORCID,Collins David J.12ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia

2. Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia

Abstract

Microfluidic organ-on-chip models recapitulate increasingly complex physiological phenomena to study tissue development and disease mechanisms, where there is a growing interest in retrieving delicate biological structures from these devices for downstream analysis. Standard bonding techniques, however, often utilize irreversible sealing, making sample retrieval unfeasible or necessitating destructive methods for disassembly. To address this, several commercial devices employ reversible sealing techniques, though integrating these techniques into early-stage prototyping workflows is often ignored because of the variation and complexity of microfluidic designs. Here, we demonstrate the concerted use of rapid prototyping techniques, including 3D printing and laser cutting, to produce multi-material microfluidic devices that can be reversibly sealed. This is enhanced via the incorporation of acrylic components directly into polydimethylsiloxane channel layers to enhance stability, sealing, and handling. These acrylic components act as a rigid surface separating the multiple mechanical seals created between the bottom substrate, the microfluidic features in the device, and the fluidic interconnect to external tubing, allowing for greater design flexibility. We demonstrate that these devices can be produced reproducibly outside of a cleanroom environment and that they can withstand ~1 bar pressures that are appropriate for a wide range of biological applications. By presenting an accessible and low-cost method, we hope to enable microfluidic prototyping for a broad range of biomedical research applications.

Funder

Australian Research Council

National Health and Medical Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3