The Time of Day Is Key to Discriminate Cultivars of Sugarcane upon Imagery Data from Unmanned Aerial Vehicle

Author:

Barbosa Júnior Marcelo RodriguesORCID,Tedesco DaniloORCID,Carreira Vinicius dos SantosORCID,Pinto Antonio Alves,Moreira Bruno Rafael de Almeida,Shiratsuchi Luciano Shozo,Zerbato Cristiano,Silva Rouverson Pereira daORCID

Abstract

Remote sensing can provide useful imagery data to monitor sugarcane in the field, whether for precision management or high-throughput phenotyping (HTP). However, research and technological development into aerial remote sensing for distinguishing cultivars is still at an early stage of development, driving the need for further in-depth investigation. The primary objective of this study was therefore to analyze whether it could be possible to discriminate market-grade cultivars of sugarcane upon imagery data from an unmanned aerial vehicle (UAV). A secondary objective was to analyze whether the time of day could impact the expressiveness of spectral bands and vegetation indices (VIs) in the biophysical modeling. The remote sensing platform acquired high-resolution imagery data, making it possible for discriminating cultivars upon spectral bands and VIs without computational unfeasibility. 12:00 PM especially proved to be the most reliable time of day to perform the flight on the field and model the cultivars upon spectral bands. In contrast, the discrimination upon VIs was not specific to the time of flight. Therefore, this study can provide further information about the division of cultivars of sugarcane merely as a result of processing UAV imagery data. Insights will drive the knowledge necessary to effectively advance the field’s prominence in developing low-altitude, remotely sensing sugarcane.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3