UAVs to Monitor and Manage Sugarcane: Integrative Review

Author:

Barbosa Júnior Marcelo RodriguesORCID,Moreira Bruno Rafael de Almeida,Brito Filho Armando Lopes de,Tedesco DaniloORCID,Shiratsuchi Luciano Shozo,Silva Rouverson Pereira daORCID

Abstract

Pilotless aircraft systems will reshape our critical thinking about agriculture. Furthermore, because they can drive a transformative precision and digital farming, we authoritatively review the contemporary academic literature on UAVs from every angle imaginable for remote sensing and on-field management, particularly for sugarcane. We focus our search on the period of 2016–2021 to refer to the broadest bibliometric collection, from the emergence of the term “UAV” in the typical literature on sugarcane to the latest year of complete publication. UAVs are capable of navigating throughout the field both autonomously and semi-autonomously at the control of an assistant operator. They prove useful to remotely capture the spatial-temporal variability with pinpoint accuracy. Thereby, they can enable the stakeholder to make early-stage decisions at the right time and place, whether for mapping, re-planting, or fertilizing areas producing feedstock for food and bioenergy. Most excitingly, they are flexible. Hence, we can strategically explore them to spray active ingredients and spread entomopathogenic bioagents (e.g., Cotesia flavipes and Thricrogramma spp.) onto the field wherever they need to be in order to suppress economically relevant pests (e.g., Diatraea saccharalis, Mahanarva fimbriolata, sugarcane mosaic virus, and weeds) more precisely and environmentally responsibly than what is possible with traditional approaches (without the need to heavily traffic and touch the object). Plainly, this means that insights into ramifications of our integrative review are timely. They will provide knowledge to progress the field’s prominence in operating flying machines to level up the cost-effectiveness of producing sugarcane towards solving the sector’s greatest challenges ahead, such as achieving food and energy security in order to thrive in an ever-challenging world.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3