High-Throughput Phenotyping of Indirect Traits for Early-Stage Selection in Sugarcane Breeding

Author:

Natarajan SijeshORCID,Basnayake Jayampathi,Wei Xianming,Lakshmanan Prakash

Abstract

One of the major limitations for sugarcane genetic improvement is the low heritability of yield in the early stages of breeding, mainly due to confounding inter-plot competition effects. In this study, we investigate an indirect selection index (Si), developed based on traits correlated to yield (indirect traits) that were measured using an unmanned aerial vehicle (UAV), to improve clonal assessment in early stages of sugarcane breeding. A single-row early-stage clonal assessment trial, involving 2134 progenies derived from 245 crosses, and a multi-row experiment representative of pure-stand conditions, with an unrelated population of 40 genotypes, were used in this study. Both experiments were screened at several stages using visual, multispectral, and thermal sensors mounted on a UAV for indirect traits, including canopy cover, canopy height, canopy temperature, and normalised difference vegetation index (NDVI). To construct the indirect selection index, phenotypic and genotypic variance-covariances were estimated in the single-row and multi-row experiment, respectively. Clonal selection from the indirect selection index was compared to single-row yield-based selection. Ground observations of stalk number and plant height at six months after planting made from a subset of 75 clones within the single-row experiment were highly correlated to canopy cover (rg = 0.72) and canopy height (rg = 0.69), respectively. The indirect traits had high heritability and strong genetic correlation with cane yield in both the single-row and multi-row experiments. Only 45% of the clones were common between the indirect selection index and single-row yield based selection, and the expected efficiency of correlated response to selection for pure-stand yield based on indirect traits (44%–73%) was higher than that based on single-row yield (45%). These results highlight the potential of high-throughput phenotyping of indirect traits combined in an indirect selection index for improving early-stage clonal selections in sugarcane breeding.

Funder

Sugar Research Australia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3