Mapping Gaps in Sugarcane by UAV RGB Imagery: The Lower and Earlier the Flight, the More Accurate

Author:

Barbosa Júnior Marcelo RodriguesORCID,Tedesco DaniloORCID,Corrêa Rafael de Graaf,Moreira Bruno Rafael de Almeida,Silva Rouverson Pereira daORCID,Zerbato Cristiano

Abstract

Imagery data prove useful for mapping gaps in sugarcane. However, if the quality of data is poor or the moment of flying an aerial platform is not compatible to phenology, prediction becomes rather inaccurate. Therefore, we analyzed how the combination of pixel size (3.5, 6.0 and 8.2 cm) and height of plant (0.5, 0.9, 1.0, 1.2 and 1.7 m) could impact the mapping of gaps on unmanned aerial vehicle (UAV) RGB imagery. Both factors significantly influenced mapping. The larger the pixel or plant, the less accurate the prediction. Error was more likely to occur for regions on the field where actively growing vegetation overlapped at gaps of 0.5 m. Hence, even 3.5 cm pixel did not capture them. Overall, pixels of 3.5 cm and plants of 0.5 m outstripped other combinations, making it the most accurate (absolute error ~0.015 m) solution for remote mapping on the field. Our insights are timely and provide forward knowledge that is particularly relevant to progress in the field’s prominence of flying a UAV to map gaps. They will enable producers to make decisions on replanting and fertilizing site-specific high-resolution imagery data.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3