Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry

Author:

Kindra VladimirORCID,Rogalev Nikolay,Rogalev Andrey,Naumov VladimirORCID,Sabanova Ekaterina

Abstract

The fuel price increase and severe environmental regulations determine energy-saving importance. Useful utilization of low-potential heat sources with 300–400 °С temperature becomes topical. The application of low-temperature power production facilities operating low-boiling heat carriers could be a solution to this problem. A comparative parametric study of a number of heat carriers resulted in a choice of the most promising fluids that are not expensive, have low toxicity and flammability, low ozone depletion and low global warming potential. These heat carriers are considered for application in simple power production cycles with and without regeneration. The main parameters were optimized at the initial temperatures of 323.15–623.15 K. The cycle without regeneration has a maximal net efficiency of 29.34% using the water at an initial temperature of 623.15 K. The regenerative cycle at a temperature below 490 K has its maximal efficiency using a water heat carrier, and at a higher temperature above 490 K with R236ea. The cycle with R236ea at 623.15 K has an electrical net efficiency of 33.30%. Using a water heat carrier, the maximal efficiency can be reached at pressures below 5 MPa for both cycles. Among the organic heat carriers, the minimal optimal initial pressure of a simple cycle is reached with the R236ea heat carrier below 45 MPa without regeneration and below 15 MPa with regeneration. Therefore when utilizing the latent heat with temperatures above 500 K R134a, R236ea and R124 are the most promising organic fluids. Such conditions could be obtained using different industrial sources with water condensation at elevated pressures.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3