Research and Development of Hybrid Power Units Heat Flow Diagrams with Cooled High-Temperature Steam Turbines

Author:

Rogalev Nikolay,Kharlamova Daria,Vegera Andrey,Naumov VladimirORCID,Karev TimofeyORCID

Abstract

Fossil fuel thermal power plants account for almost 60% of Russian electricity and heat. Steam turbine units make almost 80% of this amount. The main method for steam turbine unit efficiency improvement is the increase in the initial steam parameters’ temperature and pressure. This reduces fossil fuel consumption and harmful emissions but requires the application of heat-resistant steel. The improvement in steel’s heat resistance leads to a non-linear price increase, and the larger the temperature increase, the more the steel costs. One of the methods of improving efficiency without a significant increase in the capital cost of equipment is an external combustion chamber. These allow an increase in the steam temperature outside the boiler without the need to use heat-resistant alloys for boiler superheaters and steam pipelines between the boiler and the steam turbine. The most promising is hydrogen–oxygen combustion chambers, which produce steam with high purity and parameters. To reduce the cost of high-temperature steam turbines, it is possible to use a cooling system with the supply of a steam coolant to the most thermally stressed elements. According to the calculations, the efficiency reduction of a power unit due to the turbine cooling is 0.6–1.27%. The steam superheating up to 720 °C in external combustion chambers instead of a boiler unit improves the unit efficiency by 0.27%. At the initial steam temperatures of 800 °C, 850 °C, and 900 °C, the unit efficiency reduction caused by cooling is 4.09–5.68%, 7.47–9.73%, and 8.28–10.04%, respectively.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Engineering

Reference44 articles.

1. Main Characteristics of the Russian Electric Power Industry;Ministry of Energy of Russian Federation

2. Report on the Functioning of the UES of Russia in 2020 https://www.bigpowernews.ru/photos/0/0_bLbeqWOpIAYJSaYiEOT44S7HlhBdE3vG.pdf

3. Research and Development of the Oxy-Fuel Combustion Power Cycles with CO2 Recirculation

4. Thermodynamic Optimization of Low-Temperature Cycles for the Power Industry

5. A-USC Programs in the European Union;Di Gianfrancesco,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3