Calibration of Polarization Fields and Electro-Optical Response of Group-III Nitride Based c-Plane Quantum-Well Heterostructures by Application of Electro-Modulation Techniques

Author:

Papadimitriou Dimitra N.

Abstract

The polarization fields and electro-optical response of PIN-diodes based on nearly lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on (0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified. Dependent on the indium content and the applied voltage, an intense near ultra-violet emission was observed from GaN (with fundamental energy gap Eg = 3.4 eV) in the electroluminescence (EL) spectra of the InGaN/GaN and InAlN/GaN PIN-diodes. In addition, in the electroreflectance (ER) spectra of the GaN barrier structure of InAlN/GaN diodes, the three valence-split bands, Γ9, Γ7+, and Γ7−, could selectively be excited by varying the applied AC voltage, which opens new possibilities for the fine adjustment of UV emission components in deep well/shallow barrier DHS. The internal polarization field Epol = 5.4 ± 1.6 MV/cm extracted from the ER spectra of the In0.21Al0.79N/GaN DHS is in excellent agreement with the literature value of capacitance-voltage measurements (CVM) Epol = 5.1 ± 0.8 MV/cm. The strength and direction of the polarization field Epol = −2.3 ± 0.3 MV/cm of the (0001) In0.055Ga0.945N/GaN DHS determined, under flat-barrier conditions, from the Franz-Keldysh oscillations (FKOs) of the electro-optically modulated field are also in agreement with the CVM results Epol = −1.2 ± 0.4 MV/cm. The (absolute) field strength is accordingly significantly higher than the Epol strength quantified in published literature by FKOs on a semipolar ( 11 2 ¯ 2 ) oriented In0.12Ga0.88N quantum well.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3